博客
关于我
PCL滤波 ProjectInliers平面投射
阅读量:238 次
发布时间:2019-03-01

本文共 1310 字,大约阅读时间需要 4 分钟。

#include 
#include
#include
#include
#include
intmain(int argc,char ** args){ pcl::PointCloud
::Ptr cloud(new pcl::PointCloud
()); pcl::PointCloud
::Ptr cloud_pj(new pcl::PointCloud
()); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (auto& p : *cloud) { p.x = 1024 * rand() / (RAND_MAX + 1.0f); p.y = 1024 * rand() / (RAND_MAX + 1.0f); p.z = 1024 * rand() / (RAND_MAX + 1.0f); } std::cerr << "cloud before projection" << std::endl; for (const auto& p : *cloud) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; pcl::ModelCoefficients::Ptr mc(new pcl::ModelCoefficients()); //平面模型的方程为 ax+by+cz+d = 0,此时设置 a = b = d = 0,c =1,则平面为 z=0的平面,也就是 X-Y平面 //mc->values.resize(4); //mc->values[0] = mc ->values[1] = 0; //mc->values[2] = 1.0; //mc->values[3] = 0; //投射可以是任意的平面 mc->values.resize(4); mc->values[0] = mc->values[1] = 2; mc->values[2] = 1.0; mc->values[3] = 0; pcl::ProjectInliers
proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(cloud); proj.setModelCoefficients(mc); proj.filter(*cloud_pj); std::cerr << "Cloud after projection" << std::endl; for(const auto & p :*cloud_pj) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; return 0;}

转载地址:http://wrct.baihongyu.com/

你可能感兴趣的文章
Node-RED订阅MQTT主题并调试数据
查看>>
Node-RED通过npm安装的方式对应卸载
查看>>
node-request模块
查看>>
node-static 任意文件读取漏洞复现(CVE-2023-26111)
查看>>
Node.js 8 中的 util.promisify的详解
查看>>
node.js debug在webstrom工具
查看>>
Node.js GET、POST 请求是怎样的?
查看>>
Node.js HTTP模块详解:创建服务器、响应请求与客户端请求
查看>>
Node.js RESTful API如何使用?
查看>>
node.js url模块
查看>>
Node.js Web 模块的各种用法和常见场景
查看>>
Node.js 之 log4js 完全讲解
查看>>
Node.js 函数是什么样的?
查看>>
Node.js 函数计算如何突破启动瓶颈,优化启动速度
查看>>
Node.js 切近实战(七) 之Excel在线(文件&文件组)
查看>>
node.js 初体验
查看>>
Node.js 历史
查看>>
Node.js 在个推的微服务实践:基于容器的一站式命令行工具链
查看>>
Node.js 实现类似于.php,.jsp的服务器页面技术,自动路由
查看>>
Node.js 异步模式浅析
查看>>