博客
关于我
PCL滤波 ProjectInliers平面投射
阅读量:238 次
发布时间:2019-03-01

本文共 1310 字,大约阅读时间需要 4 分钟。

#include 
#include
#include
#include
#include
intmain(int argc,char ** args){ pcl::PointCloud
::Ptr cloud(new pcl::PointCloud
()); pcl::PointCloud
::Ptr cloud_pj(new pcl::PointCloud
()); cloud->width = 5; cloud->height = 1; cloud->points.resize(cloud->width * cloud->height); for (auto& p : *cloud) { p.x = 1024 * rand() / (RAND_MAX + 1.0f); p.y = 1024 * rand() / (RAND_MAX + 1.0f); p.z = 1024 * rand() / (RAND_MAX + 1.0f); } std::cerr << "cloud before projection" << std::endl; for (const auto& p : *cloud) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; pcl::ModelCoefficients::Ptr mc(new pcl::ModelCoefficients()); //平面模型的方程为 ax+by+cz+d = 0,此时设置 a = b = d = 0,c =1,则平面为 z=0的平面,也就是 X-Y平面 //mc->values.resize(4); //mc->values[0] = mc ->values[1] = 0; //mc->values[2] = 1.0; //mc->values[3] = 0; //投射可以是任意的平面 mc->values.resize(4); mc->values[0] = mc->values[1] = 2; mc->values[2] = 1.0; mc->values[3] = 0; pcl::ProjectInliers
proj; proj.setModelType(pcl::SACMODEL_PLANE); proj.setInputCloud(cloud); proj.setModelCoefficients(mc); proj.filter(*cloud_pj); std::cerr << "Cloud after projection" << std::endl; for(const auto & p :*cloud_pj) std::cout << " " << p.x << " " << p.y << " " << p.z << " " << std::endl; return 0;}

转载地址:http://wrct.baihongyu.com/

你可能感兴趣的文章
NIO基于UDP协议的网络编程
查看>>
NIO笔记---上
查看>>
NIO蔚来 面试——IP地址你了解多少?
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
NISP国家信息安全水平考试,收藏这一篇就够了
查看>>
NIS服务器的配置过程
查看>>
NIS认证管理域中的用户
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NiuShop开源商城系统 SQL注入漏洞复现
查看>>
NI笔试——大数加法
查看>>
NLog 自定义字段 写入 oracle
查看>>
NLog类库使用探索——详解配置
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP 模型中的偏差和公平性检测
查看>>
Vue3.0 性能提升主要是通过哪几方面体现的?
查看>>
NLP 项目:维基百科文章爬虫和分类【01】 - 语料库阅读器
查看>>
NLP_什么是统计语言模型_条件概率的链式法则_n元统计语言模型_马尔科夫链_数据稀疏(出现了词库中没有的词)_统计语言模型的平滑策略---人工智能工作笔记0035
查看>>
NLP、CV 很难入门?IBM 数据科学家带你梳理
查看>>
NLP三大特征抽取器:CNN、RNN与Transformer全面解析
查看>>
NLP入门(六)pyltp的介绍与使用
查看>>